
Run Time Optimization of SMPLX for Avatar Generation

Kaustav Mukherjee (kaustavmu) Adithya Narayan (anaraya2) Shaurye Aggarwal (shauryea)

Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA

Abstract

Recently, a plethora of pipelines have emerged to gener-
ate 3D clothed human avatars from single, in-the-wild im-
ages. However, all of them are limited to full-body, front-
facing human images with minimal occlusions, objects, and
simple poses. To address these limitations, we propose a
two-part, inpainting and body fitting pipeline that addresses
these issues. The inpainting pipeline uses keypoint detec-
tion and a novel keypoint estimation technique, uses LaMa
for occluding object removal, Stable Diffusion with Control-
Nets for generation of missing areas, and a GAN inversion
step to create a seamless, plausible human reconstruction.
The body fitting pipeline uses an improved regressor and
adds more losses to the iterative fitting stage to achieve a
better human mesh fit in dynamic poses. Through qualita-
tive comparisons, our pipeline shows improvements in mesh
textures and SMPL-X fit over previous methods.

1. Introduction
There is an increasing demand for 3D clothed human mod-
els in a variety of applications, such as virtual and aug-
mented reality (VR/AR), 3D printing, scene assembly, film-
making, and video games. Since the manual process of cre-
ating such models requires considerable time, manpower,
and specialized equipment, methods have arisen over time
to expedite the process. Traditionally, such 3D models
could only be created using multiview image inputs of
clothed individuals [1]. However, such data is difficult and
time-consuming to capture, and even harder to find in the
wild. Therefore, there have been an increasing number of
pipelines that attempt to create a clothed 3D human avatar
from a single image [4, 11, 18, 25, 33, 34]. These can be
created with in-the-wild images, removing the need for spe-
cialized data collection and streamlining the avatar genera-
tion process.

However, a majority of these methods are unable to
account for certain in-the-wild scenarios that may occur.
These include human-object interactions, occlusions, and

Figure 1. SIFU mesh reconstruction failures.

highly dynamic poses, all of which create significant errors
when utilizing these models. These are derived from all the
different steps in the typical avatar generation procedure.
First, there is a generative component that attempts to gener-
ate back or side views [11, 18, 33], during which interacted
objects and occlusions tend to cause generation problems,
and dynamic poses are not properly accounted for. Sec-
ond, this is followed by iteratively fitting a base human 3D
mesh [15], the most common of which is an SMPL [2, 19],
during which errors for occluded and dynamic poses accu-
mulate. Finally, there are a series of iterative normal map
and texture estimation steps that create the final 3D clothed
human avatar. In this step, object-interactions can result in
odd model behaviors, and dynamic poses can lead to poor
hidden-view normal estimation. All these effects are clear
in Fig. 1, where it can be seen that smaller objects such
as the soccer ball are absorbed into the human model and
larger objects such as the man holding the box lead to ex-
tremely incorrect normal maps. Furthermore, in Fig. 2, it
is also clear that dynamic poses lead to poor SMPL fits.
To ameliorate this issue, we introduce additional processing
steps to an existing pipeline to broaden the use-case of gen-
erating 3D avatars from in-the-wild images. Taking SIFU
by Zhang et al. [33], which is able to create 3D avatars
with realistic textures, capable of rigging and animation,



Figure 2. Pixie bodyfits struggle with dynamic poses.

3D printing, and complex 3D scene creation, we append
two features: the first, an inpainting pipeline that uses dif-
fusion [24, 26] and GAN models [9] to remove interacted
objects and reconstruct occluded areas, and the second, a
new regressor and iterative fitting step for the initial human
3D mesh fitting using PyMAF-x [30], along with additional
depth and keypoint data to improve the iterative fitting loop.
By creating these two solutions that are easily integrable
into SIFU, our pipeline becomes more flexible and can be
easily integrated into other, future human avatar generation
methods with little extra work.

Therefore, we present Run Time Optimization of SM-
PLX for Avatar Generation, a novel pipeline that aims to
extend the use-case of human avatar generation to more
in-the-wild settings. While quantitative evaluation meth-
ods exist for 3D avatar generation, since existing datasets
[6, 28] do not have meshes for in-the-wild images, we in-
stead provide a qualitative evaluation that shows substantial
improvements for SMPL prediction and normal map gener-
ation for human-object interactions, occluded images, and
highly dynamic poses. Our key contributions include
• A novel keypoint estimation process using OpenPose [3]

and XGBoost [5] to regenerate occluded humans.
• An inpainting pipeline to preprocess in-the-wild human

images, suitable for any 3D avatar generation pipeline.
• An improved 3D human mesh fitting pipeline using the

PyMAF-x regressor [30] and additional keypoint and
depth constraints for the iterative fitting loop.

2. Related Work

Single-Image 3D Avatar Generation A majority of re-
cent work done on 3D avatar generation concerns the
use of single images to create 3D clothed human avatars
[4, 11, 18, 25, 33, 34]. Early works, such as the semi-
nal work PIFu by Saito et al. [25] use implicit functions
to predict 3D geometry, but newer works [11, 18, 33] use
explicit methods such as parametric body models [2] and
fit them to the input images. These newer works also all
have hidden-view generation steps that range from video
diffusion models in HumanVDM [18], to control-net aided
2D diffusion in SiTH [11, 31], to transformer-based predic-

tion in SIFU [33]. Where they also differ is their normal
and RGB map prediction. While SiTH, SIFU, and Ultra-
man [4] all use neural networks to query points and deter-
mine normals and RGB values, HumanVDM uses 3D Gaus-
sian Splatting [12] to create a riggable 3D avatar. Pipelines
like SIFU also have additional texture refinement steps us-
ing text-based diffusion models to improve texture qual-
ity in hidden views. However, all of these methods only
look at a narrow use-case of full-body clothed human im-
ages with little to no object interactions, and relatively sim-
ple poses found in datasets such as THuman and DNA-
Rendering [6, 28], resulting in pipelines that malfunction
for real in-the-wild images with human-object interactions,
occlusions, and dynamic poses.

3D Human Mesh and Fitting Focusing in on explicit
methods for 3D avatar generation, all of them have a re-
quirement for parametric body models that can be fit to
the input image. The first of these was a skinned, multi-
person linear model, SMPL, by Loper et al. [19], soon after
which came SMPLify [2], a CNN-based method to predict
an SMPL fit for an input image. New models and methods
have since released hand-in-hand, with SMPL-X [21] ex-
panding on the SMPL model with additional parameters for
facial and hand expression, and a new method SMPLify-X
to account for and fit these features. Since then, new re-
gressors have attempted to improve the SMPL-X fit, such
as PIXIE [8], which is used by SIFU, which fits the hands,
body, and face with sub-networks and combines the predic-
tions for an improved fit. PyMAF and PyMAF-X [29, 30]
use spatial feature pyramids and an additional mesh align-
ment iterative loop, while HybrIK and HybrIK-X [16, 17]
utilize inverse kinematics to convert precise 3D keypoints
to parametric human body meshes. Furthermore, newer and
more complete pipelines like KBody [35] add further com-
ponents to the iterative fitting loop to refine the body mesh
after initial regression, such as depth, keypoint, camera, and
silhouette losses. These techniques can be combined and
improved upon to allow for a better parametric model fit in
our proposed pipeline.

Human Image Generation and Inpainting Pre-
existing works on human image inpainting include EXE-
GAN [20], which is only trained on inpainting faces, and
another method by Grigorev et al. [10] which aims to gen-
erate an image in a forward-facing pose from an incomplete
image from a different pose. Neither of these are partic-
ularly relevant or well suited to the task at hand. A re-
cent work, KBody [35], explores inpainting for the com-
pletion of human images before use in an SMPL-fitting
pipeline, which is extremely relevant. It proposes the use
of a pre-trained encoder [27] to project the input image into
the StyleGAN-Human [9] latent space, and using a test-
time finetuning technique known as pivotal tuning inversion
(PTI) [23] to generate a complete image. However, with



testing, this process is unable to account for larger occlu-
sions, dynamic poses, and some object interactions. Apart
from GAN-based generation and inpainting, another possi-
ble avenue is the use of diffusion models [24] to generate
missing areas. The first step in these pipelines is to utilise
some segmentation model, such as YOLOv11 [13] or Seg-
ment Anything (SAM) [14] to identify missing areas, and
then using both image and text conditioned diffusion to in-
paint them. Further methods to control diffusion include
controlnets [31], which propose the addition of one or more
condition images to condition the diffusion process using
an encoder and zero-convolutions during decoding steps.
Segmentation masks, as discussed earlier, can be used as
conditions, as well as human pose keypoints, such as those
generated by OpenPose [3]. Other forms of inpainting in-
clude LaMa [26], which uses fourier transforms to generate
missing areas of an image. While any single method here
is insufficient to address the myriad of requirements for the
inpainting pipeline, a combination of these can result in a
more holistic solution.

3. Methodology
The overall pipeline is split into inpainting and SMPL-X
estimation.

3.1. Inpainting

The full inpainting pipeline is shown in Fig. 3, and con-
sists of four key different steps. First, a preprocessing step
for segmentation and pose detection, then aligning the im-
age and estimating missing keypoints, follow by mask- and
pose-conditioned inpainting, and finally GAN-based inver-
sion to smoothen the final image.

Figure 3. Full inpainting pipeline.

3.1.1 Preprocessing

To simplify and automate the preprocessing, off-the-shelf
models are used for both segmentation and keypoint esti-
mation. YOLOv11 [13] is pretrained for human bounding

box and segmentation mask detection, as well as for a vari-
ety of object classes. This allows the model to identify any
objects that the human in the image is interacting with, and
generate a mask that can be used to remove said object in
further steps. The keypoint detection model, OpenPose [3],
is used as an an 18-point keypoint detector for face, hands,
and body, and can determine keypoints for partial or oc-
cluded images, with the missing keypoints being generated
by a later step.

3.1.2 Image Alignment and Keypoint Estimation

In order to input an image into StyleGAN-Human in the
fourth step, the input image resolution must be 512× 1024.
Since the input to the pipeline may be incomplete or oc-
cluded, the image must first be properly resized, then
aligned, and missing keypoints must then be generated.
This is done using samples from StyleGAN-Human [27]
and detecting keypoints to create a ground-truth dataset of
keypoints, and also determine values for average locations
of different keypoints, K0. This is used to:
• Properly align the images to the output canvas by gener-

ating an affine transformation A.
• Since the StyleGAN-Human dataset only accounts for hu-

mans in forward-facing, non-dynamic poses, any input
images in this pipeline will not be well-served by the key-
point generation and GAN inversion steps. Therefore, an
L2 Norm is taken of the input image keypoints K and
K0, and a threshold t is used to determine whether a spe-
cific pose is too dynamic and will be exlucded from the
aforementioned steps.

• For images within the threshold, train an XGBoost [5]
model with K0 to learn relationships between the key-
points. The keypoint generation process is treated as
data imputation [7], meaning that missing keypoints are
treated as missing data in an input dataset, and XGBoost
is able to predict the remaining keypoints Kin using the
trained model from K0.

This process then outputs an aligned human image I0, hu-
man mask SH , object mask SO, and keypoint image Kin.

3.1.3 Inpainting

The next key step is inpainting missing areas to remove oc-
cluding objects and regenerate limbs. Instead of a single
inpainting step, a multi-step, two-model approach is used
to achieve better results by capitalizing on the strengths of
each model.

LaMa [26] is first used due to its ability to use contex-
tual data around the object removal mask SO to properly
fill the missing area in the image I0. In addition, LaMa
comes with a refinement step that uses structural data from
low-resolution generations to improve the high-resolution
final image generation. This works particularly well for the



removal of occluding objects and generates image I1, ready
for the next inpainting step.

This is followed by the use of Stable Diffusion [24] with
two controlnets [31] simultaneously - keypoint image Kin,
and human segmentation mask SH . This outputs an im-
age I2 that has a plausible human shape, but often contains
seams between the original and generated area, extra limbs
or fingers, or other odd generations that will affect the body
fit and normal map generation in later steps. Therefore,
GAN inversion is used to create a smoother final image.

3.1.4 GAN Inversion

The GAN inversion step is inspired by KBody [35], which
directly uses GAN inversion on an input image. Here, it is
used as the final step after larger occlusions, objects, and
dynamic poses have been removed by the pipeline. The
image I2 is first passed through a pretrained e4e encoder
[27] to map onto the latent space W of StyleGAN-Human
[9], resulting in a latent representation w2. After this, a fi-
nal image I3 can be generated, using generator weights θ,
as I3 = G(w2; θ). However, instead of generating the fi-
nal image by just using the default generator G, PTI [23] is
used to fine-tune the generator at test time, which allows the
regenerated image to better resemble the input image while
having complete, coherent features. However, while PTI
was designed for complete image editing, since the desired
functionality here is to create a plausible inpainting result,
the loss function is changed to reflect that. With tuned gen-
erator weights θ∗, where I4 = G(w2; θ

∗). The original loss
function of PTI is as follows:

Lpt = LLPIPS(I3, I4) + λL2LL2(I3, I4) (1)

It uses the L2 loss, as well as the perceptual similarity loss
LPIPS [32]. For inpainting, a masked loss is used using
SH to calculate loss only for the area of the original input
image, represented by I3 ⊙ SH , allowing the generator to
create a plausible representation of the remaining image.
While the latent space W0 and representation w0 remain the
same, the generator tuning creates the final image IF , which
can then be used for the generation of human avatars.

3.2. SMPL-X Estimation

The SMPL-X estimation was enhanced by focusing on im-
provements in both the SMPL regressor and the iterative
refinement process.

3.2.1 SMPL-X Regressor

To improve the performance of the SMPL-X body-fit, we
replace the PIXIE[8] regressor with PyMAF-X[30]. Prior
to this, we experiemnted with several regressors including
Hybrik[16], and K-Body[35]. However both approaches

Figure 4. We use the system of losses recommended in K-Body
[35].

were limited in specific ways. For instance, Before settling
on PyMAF-X, we experimented with several other state-of-
the-art regressors, including Hybrik[16], and K-Body[35].
While each of these methods demonstrated strengths in spe-
cific scenarios, they exhibited certain limitations. For in-
stance, Hybrik, despite its kinematic modeling capabili-
ties, failed to consistently capture fine-grained surface de-
tails. Similarly, K-Body performed well for rigid body pos-
tures but faced challenges with complex poses and self-
occlusions.

PyMAF-X stood out as it leverages a hybrid representa-
tion that integrates parametric and non-parametric modeling
to accurately capture detailed surface deformations while
ensuring global consistency of the SMPL-X mesh. Unlike
the other methods, PyMAF-X employs a multi-level feature
aggregation approach, iteratively refining body shape and
pose estimation. This approach significantly enhances ro-
bustness and accuracy, particularly in challenging scenarios
such as extreme poses, occluded body parts, or noisy inputs.

Furthermore, PyMAF-X’s hierarchical optimization
pipeline, which combines pixel-aligned features with global
shape priors, ensures anatomically plausible SMPL-X re-
constructions. These improvements made PyMAF-X the
most reliable choice for our application, providing an ac-
curate and robust foundation for downstream tasks such as
pose transfer and motion retargeting.

3.2.2 SMPL-X Iterative Fitting

We use a variation of the system of losses shown in Fig.
4, incorporating a mixture of losses alongside the SMPL
loss and the silhouette loss used in the PyMAF-X frame-
work. Much like most SMPL works [15][30][19], we use
LSMPL and Lsilhouette components to refine the body pose
and shape parameters. However, inspired by K-Body[35]
we also include an edge loss (LSobel) and a distance map
based loss (Lshillouette). The overall loss function Ltotal is



(a) Inpainting pipeline image results. (b) Mesh reconstruction with inpainting.

Figure 5. Inpainting and mesh reconstruction results.

formulated as a weighted combination of these losses:

Ltotal = λSMPLLSMPL + λsilhouetteLsilhouette

+ λdistLdist + λSobelLSobel.

The distance-map loss Ldistance helps refine the spatial
alignment of body parts. It computes the difference between
predicted and ground truth distance maps Dpred and DGT,
ensuring accurate body surface reconstruction:

Ldistance =
1

P

P∑
p=1

∥Dpred(p)−DGT(p)∥22

Finally, the Sobel loss LSobel leverages edge information by
penalizing differences in gradients between the predicted
and ground truth silhouettes. This helps refine edge regions,
improving alignment at boundaries:

LSobel = ∥∇xSpred −∇xSGT∥22 + ∥∇ySpred −∇ySGT∥22

where ∇x and ∇y are horizontal and vertical gradients.
We observed that while the camera-based loss and key-

point loss did not provide significant improvements over the
baseline, the inclusion of distance-map and Sobel losses no-
tably enhanced the body parameter fit. This combination
of losses helps achieve more accurate body pose estima-
tion and better alignment with the target silhouette, resulting
in improved performance over the baseline. Furthermore,
since we observed that the magnitude LSobel and Ldist was
one order of 10 larger than the other loss components. To
counteract this, λdist = 0.01,λSobel = 0.1, λsilhouette = 1
and λSMPL = 1 were selected.

4. Results
To assess our method, we implement our inpainting and
body fitting pipelines within SIFU [33] and perform qual-
itative evaluations on the SMPL fit and normal maps on

a variety of in-the-wild images found online. This is in
lieu of a quantitative evaluation due to the lack of human-
to-mesh datasets with objects, occlusions, and highly dy-
namic poses. Through these qualitative evaluations, we
demonstrate the effectiveness of our method in dealing with
human-object interactions, occlusions, and highly dynamic
poses compared to SIFU.

4.1. Implementation

The inpainting pipeline is appended in front of the SIFU
pipeline, such that outputs of this pipeline are input to SIFU.
XGBoost 2.1.3 is used for keypoint estimation. LaMa is run
with the big-lama checkpoint, with refinement set to True
and refinement iterations set to 50. ControlNet is imple-
mented in Stable Diffusion 1.5 using HuggingFace, which
is provided directly by the authors of the paper. Finally,
the GAN inversion pipeline is adapted from code in the
StyleGAN-Human repository. Due to computational con-
straints, the full inpainting pipeline was run on CPU, with
an average runtime of 30 minutes per image. PyMAF-X
is implemented in place of PIXIE, and additional losses
are added to the iterative fitting of SIFU, and run for 100
iterations, running in under a minute per image using an
NVIDIA 3090 GPU.

4.2. Inpainting Pipeline

Three categories of images were tested for inpainting: small
hand-object interactions, images with cut-offs, and large oc-
cluding objects. From Fig. 5a, it can be seen that for small
hand-object interactions, convincing outputs with few ar-
tifacts can be achieved by the pipeline. As these images
have most of the keypoints and fairly dynamic poses, the
keypoint estimation and GAN inversion steps are automati-
cally skipped, resulting in a very realistic output due to the
lower amount of processing needed. Images with missing
body sections go through the keypoint estimation and GAN



(a) Our implementation vs. SIFU. (b) More fits on dynamic poses. (c) Various failure cases.

Figure 6. PyMAF-X body fit regression results.

inversion steps, resulting in a final product with more arti-
facts. The results from the diffusion step have odd genera-
tions, especially near the legs, and while the GAN inversion
step produces a more anatomically realistic final result, the
pictures are blurry. Especially for the image where the right
side is occluded, significant facial detail is lost. Finally,
images with larger occlusions have significantly worse per-
formance. It can be observed poor diffusion outputs lead to
significantly noisier final products after GAN inversion.

As the goal of this pipeline is to produce an improved
normal map for 3D clothed avatars, testing the inpainted
images with the SIFU pipeline shows its efficacy in remov-
ing errors. In Fig. 5b, SIFU is unable to generate correct
normal maps for occluded and incomplete images, result-
ing in odd and incomplete textures for not only the affected
area but also visible areas such as the neck and face. Our
pipeline allows for the generation of a more realistic, com-
plete, and error-free normal map. However, there are still
issues with backgrounds being absorbed into the body, as
well as lower detail in the face and clothing.

4.3. SMPL-X Fitting

The use of PyMAF-X shows clear qualitative improvements
over the baseline on highly dynamic poses. Fig. 6a shows
significantly better fits for limbs, along with smaller details
like head alignment. More examples are seen in Fig. 6b,
where various dynamic poses in athletic environments are
properly fit to by our implementation. However, certain fail-
ure cases are visible in Fig. 6c. Very flexible poses are still
problematic, along with dynamic poses where the limbs can
be easily swapped. There are also issues with background
removal leading to poor fits.

5. Conclusion
In this work, we attempt to bring single-image to 3D clothed
avatar reconstruction to more in-the-wild scenarios by ac-
counting for human-object interaction, large occlusions,
and dynamic poses. We leverage off-the-shelf segmentation
and pose detection models, and create an inpainting pipeline
with keypoint estimation, diffusion-based object removal
and inpainting, and GAN inversion to create a plausible hu-
man image based on the occluded input. We also implement
PyMAF-X [30] to replace the body fit regressor, improving
the fit for dynamic poses. We then implement both changes
in the pre-existing SIFU [33] to generate improved SMPL
fits and normal maps. We qualitatively evaluate these meth-
ods against SIFU to show its success in accounting for the
aforementioned in-the-wild scenarios when reconstructing
3D human avatars from single images.

6. Future Work
Due to the lack of previous work tackling these exact
problems, much work can be done to improve these
results. Fine-tuning StyleGAN-Human [9] on dynamic
poses will allow for reconstructions on more poses. Using
ensembles of face and hand keypoint detection, prediction,
and generation models can improve details in those areas.
Failure cases for body fitting dynamic poses from certain
angles can be addresed by a more robust regressor and
additional losses in the iterative fitting process. Further-
more, better background separation will prevent cases
of limbs being removed when removing backgrounds in
dynamic poses. Finally, we could explore performance on
standard datasets like CAPE [22], and also explore using
synthetic data to better evaluate this model on harder poses.
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